

Evaluation of NCAR aerosol assimilation using AEROCOM

William D. Collins and David W. Fillmore

National Center for Atmospheric Research
Boulder, Colorado

Role of MATCH in SARB

Evaluation of MATCH using AEROCOM

(Aeronet 550 nm AOD)

Aeronet AOD for Sites with 4-year Records

- Number of Sites = 103
- Mean AOD = 0.21
- Stdev AOD = 0.13

Model Mean-Square Error (MSE)

Define

M = Model time series of daily-mean AOD

A = AERONET time series of daily-mean AOD

 $\langle M \rangle$ = Time-mean model AOD

 $\langle A \rangle$ = Time-mean AERONET AOD

Then mean square error is

$$MSE = \langle (M - A)^{2} \rangle$$

$$= \langle \left[(M - \langle M \rangle) - (A - \langle A \rangle) + (\langle M \rangle - \langle A \rangle) \right]^{2} \rangle$$

$$= \langle (M - \langle M \rangle)^{2} \rangle + \langle (A - \langle A \rangle)^{2} \rangle - 2 \langle (M - \langle M \rangle) (A - \langle A \rangle) \rangle + (\langle M \rangle - \langle A \rangle)^{2}$$

$$= Var(M) + Var(A) - 2 Cov(M, A) + (\langle M \rangle - \langle A \rangle)^{2}$$

$$RMSE = \sqrt{MSE}$$

Symbols are

Var(M) = Variance in model time series

Var(A) = Variance in AERONET time series

Cov(M, A) = Covariance in model and AERONET time series

RMSE in Daily-mean Model AOD

- Mean RMSE = 0.17
- Stdev RMSE = 0.09

- Median Ratio = 0.79
- Minimum Ratio = 0.43
- Maximum Ratio = 4.22

Examples: Small & Large RMSE / Aeronet AOD

RMSE / Aeronet AOD = 4.21

Decomposition of Mean-Square Error

Since least-squares correlation coefficient is

$$r = \frac{Cov(M, A)}{\sqrt{Var(M)}\sqrt{Var(A)}}$$

Therefore the MSE can be written in the form

$$MSE = Var(M) + Var(A) - 2 \quad Cov(M, A) + \left(\langle M \rangle - \langle A \rangle\right)^{2}$$

$$= Var(M) + Var(A) - 2 \quad r \sqrt{Var(M)} \sqrt{Var(A)} + \left(\langle M \rangle - \langle A \rangle\right)^{2}$$

$$= Var(M) + Var(A) - 2 \quad r \sqrt{Var(M)} \sqrt{Var(M)} \sqrt{Var(A)} + \left(\langle M \rangle - \langle A \rangle\right)^{2}$$

$$= \left(Var(M) + Var(A) - 2\sqrt{Var(M)} \sqrt{Var(A)}\right)$$

$$-2(r-1)\sqrt{Var(M)} \sqrt{Var(A)} + \left(\langle M \rangle - \langle A \rangle\right)^{2}$$

$$= \underbrace{\left(\sqrt{Var(M)} - \sqrt{Var(A)}\right)^{2}}_{\text{Variance}} + \underbrace{2(1-r)\sqrt{Var(M)}\sqrt{Var(A)}}_{\text{Correlation}} + \underbrace{\left(\left\langle M\right\rangle - \left\langle A\right\rangle\right)^{2}}_{\text{Mean}}$$

Decomposition of Mean-Square Error

Therefore the mean-square error is a sum of 3 terms:

MSE = MSE(variance) + MSE(correlation) + MSE(mean)

MSE(var)/MSE=0.51

MSE(cov)/MSE=0.98

MSE(mean)/MSE=0.79

Fractional Contribution of Errors in AOD Mean

Fractional Contribution of Errors in AOD Variance

Fractional Contributions of Errors in AOD Correlation

Contributions to Mean Square Error

- Median Ratio = 0.07
- Minimum Ratio = 0.00
- Maximum Ratio = 0.79

- Median Ratio = 0.07
- Minimum Ratio = 0.00
- Maximum Ratio = 0.51

- Median Ratio = 0.83
- Minimum Ratio = 0.11
- Maximum Ratio = 0.99

Fractions vs. Averaging Time Period

Surface Concentration by Species: N. America

Surface Concentration by Species: Europe

NCAR

Conclusions

- In a global mean sense, MATCH and Aeronet AODs are in reasonable agreement:
 - $Model = 0.217 \pm 0.24$
 - Aeronet = 0.218 \pm 0.20
- However, the RMSEs on daily timescales are large:
 - Correlation = 0.57
 - Global mean RMSE = 0.17 ± 0.09
- These errors are dominated by correlation/phase errors:
 - MSE(mean)/MSE = 0.07
 - MSE(var)/MSE = 0.07
 - -MSE(cov)/MSE = 0.83
- Puzzle: Why don't phase errors decrease with averaging interval?
 - Lifetime of tropospheric aerosols is ~ 1 week.
 - Transport timescales in upper troposphere is ~ 1 week.